Full Title
MALTRATTAMENTO E ABUSO ALL'INFANZIA
Publisher
FrancoAngeli
ISSN
1591-4267 (Printed Journal)
1972-5140 (Online Journal)
Journal Volume Number
25
Journal Issue Number
3
Journal Issue Designation
3
Journal Issue Date
2023
Full Title
Un algoritmo di screening psicosociale dei nuclei familiari fragili afferenti alla AUSL di Modena
By (author)
First Page
85
Last Page
108
Language of text
Italian
Publication Date
2024/01
Copyright
2023 FrancoAngeli srl
Main description
La ricerca propone una prima validazione dell'algoritmo Screening Psicosociale Ri-schi/Risorse Parentali (SRP), sviluppato per supportare i Servizi di protezione dell'infanzia nella valutazione dei nuclei familiari afferenti. L'algoritmo SRP produce un output previsio-nale del rischio di esperienza infantili avverse (ACE) elaborando informazioni ricavate da: il Protocollo di valutazione dei fattori di rischio e di protezione psicosociale (FdR-FP); il Pa-renting Stress Index (PSI – SF); lo Strengths and Difficulties Questionnaire (SDQ). I partecipanti sono 122 minori (73 femmine; età media 9.31 anni; range = 0-17 aa; DS = 4.34). I risultati (V di Cramer 0.54; p-value associato al test Chi-quadrato 0.001) mostrano buoni margini di efficacia previsionale dello strumento.
Unstructured Citation
Abidin, R. R. (1995). Parenting Stress Index (3rd ed.). Odessa, FL: Psychological Assessment Resources.
Unstructured Citation
Antle, B. F., Christensen, D. N., van Zyl, M. A., & Barbee, A. P. (2012). The impact of the Solution Based Casework (SBC),
practice model on federal outcomes in public child welfare. Child Abuse & Neglect, 36, 342-353.
https://doi.org/10.1016/j.chiabu.2011.10.009
Unstructured Citation
Baird, C., Wagner, D., Healy, T., & Johnson, K. (1999a). Research-based risk assessment: Adding equity to CPS decision-making. Madison, WI: Children’s Research Center.
Unstructured Citation
Baird, C., Wagner, D., Healy, T., Johnson, K. (1999b). Risk assessment in Child Protective Service: Consensus and Actuarial Model Reliability. Child Welfare League of America, 78(6), 723-748.
Unstructured Citation
Bartelink, C., van Yperen, T. A., & ten Berge, I. J. (2015). Deciding on child maltreatment: A literature review on methods
that improve decision-making. Child Abuse & Neglet, 49, 142-151.
https://doi.org/10.1016/j.chiabu.2015.07.002
Unstructured Citation
Baumann, D. J., Dalgleish, L., Fluke, J., & Kern, H. (2011). The decision-making ecology. Washington, DC: American Humane Association.
Unstructured Citation
Bendenishty, R., & Chen, W. (2003). Decision making by the Child Protection Team of a Medical Center. Health & Social Work,
28(4), 284-292.
https://doi.org/10.1093/hsw/28.4.284
Unstructured Citation
Chang, J., Rhee, S., & Weaver, D. (2006). Characteristics of child abuse in immigrant Korean families and correlates of placement
decisions. Child Abuse & Neglet, 30, 881-891.
https://doi.org/10.1016/j.chiabu.2006.03.002
Unstructured Citation
Cooksey, R. W. (1996). Judgment analysis: Theory, methods and application. Cambridge: Academic Press.
Unstructured Citation
Couchoud, C. G., Beuscart, J. B. R., Aldigier, J. C., Brunet, P. J., & Moranne, O. P. (2015). Development of a risk stratification
algorithm to improve patient-centered care and decision making for incident elderly patients with end-stage renal disease.
Kidney international, 88(5), 1178-1186.
https://doi.org/10.1038/ki.2015.245
Unstructured Citation
Cuccaro-Alamin, S., Foust, R., Vaithianathan, R., & Putnam-Hornstein, E. (2017). Risk assessment and decision making in child
protective services: Predictive risk modeling in context. Children and Youth Service Review, 79, 291-298.
https://doi.org/10.1016/j.childyouth.2017.06.027
Unstructured Citation
Cummings, E. M., Davies, P. T., & Campbell, S. B. (2000). Developmental psychopathology and family process: Theory, research, and clinical implications. New York: Guilford Press.
Unstructured Citation
D’Andrade, A., Austin, M. J., & Benton, A. (2008). Risk and Safety Assessment in Child Walfare: Instrument Comparisons. Journal
of Evidence-Based Social Work, Vol. 5, N.1/2, pp. 31-56.
https://doi.org/10.1300/J394v05n01_03
Unstructured Citation
Dalgleish, L. I. (1988). Decision-making in child abuse cases: Applications of social judgement theory and signal detection
theory. In: B., Joyce, C.R.B. (Ed.) Human judgment: The SJT view (pp.47-72). North Holland: Elsevier.
https://doi.org/10.1016/S0166-4115(08)62178-0
Unstructured Citation
Dalgleish, L. I. (2003). Risk, needs and consequences. In: Calder, M. C. (Ed.) Assessment in childcare: A comprehensive guide to frameworks and their use (pp. 86-99). Dorset, UK: Russell House Publishing.
Unstructured Citation
Dettlaff, A., Graham, J. C., Holzman, J., Baumann, D. J., & Fluke, J. D. (2015). Development of an instrument to understand
the child protective services decision-making process, with a focus on placement decisions. Child Abuse & Neglet, 49, 24-34.
https://doi.org/10.1016/j.chiabu.2015.04.007
Unstructured Citation
Dettlaff, A. J., Rivaux, S. R., Baumann, D. J., Fluke, J. D., Rycraft, J. R., & James, J. (2011). Disentangling substantiation:
the influence of race, income & risk on the substantiation decision in child welfare. Children and Youth Service Review, 33,
1630-1637.
https://doi.org/10.1016/j.childyouth.2011.04.005
Unstructured Citation
Di Blasio, P., (2005). Tra rischio e protezione. La valutazione delle competenze parentali. Milano: Edizioni Unicopli.
Unstructured Citation
Di Riso, D., Salcuni, S., Chessa, D., Raudino, A., Lis, A., & Altoè, G. (2010). The Strengths and Difficulties Questionnaire
(SDQ). Early evidence of its reliability and validity in a community sample of Italian children. Personality and Individual
Differences, 49(6), 570-575.
https://doi.org/10.1016/j.paid.2010.05.005
Unstructured Citation
Font, S. A., & Maguire-Jack, K. (2015). Decision-making in child protective services: Influences at multiple levels of the
social ecology. Child Abuse & Neglet, 47, 70-82.
https://doi.org/10.1016/j.chiabu.2015.02.005
Unstructured Citation
Goodman, R. (1997). The Strengths and Difficulties Questionnaire: A research note. Journal of Child Psychology and Psychiatry,
38, 581-586.
https://doi.org/10.1111/j.1469-7610.1997.tb01545.x
Unstructured Citation
Grumi, S. Milani, L., & Di Blasio, P. (2017). Risk assessment in a multicultural context: Risk and protective factors in the
decision to place children in foster care. Children and Youth Services Review, 77, 69-75.
https://doi.org/10.1016/j.childyouth.2017.04.009
Unstructured Citation
Guarino, A., Di Blasio, P., D'alessio, M., Camisasca, E., & Serantoni, G., (2008). Parenting Stress Index SF. Organizzazioni speciali, Firenze.
Unstructured Citation
Halverson, S. J., Kunju, L. P., & Bhalla, R. (2013) Accuracy of determining small renal mass management with risk stratified
biopsies: confirmation by final pathology. J Urol., 189(2), 441-446.
https://doi.org/10.1016/j.juro.2012.09.032
Unstructured Citation
Hammond, K. (1996). Human judgment and social policy. New York: Oxford Univ. Press.
https://doi.org/10.1093/oso/9780195097344.001.0001
Unstructured Citation
Johnson, W. L. (2011). The validity and utility of the California Family Risk Assessment under practice conditions in the
field: A prospective study. Child Abuse & Neglet, 35, 18-28.
https://doi.org/10.1016/j.chiabu.2010.08.002
Unstructured Citation
Kahneman, D., Frederick, S. (2005). A model of heuristic judgment. In Holyoak, K. & Morrison, B. (Eds), The Cambridge Handbook of Thinking and Reasoning (pp. 267-293). Cambridge: University Press.
Unstructured Citation
Lèveillè, S., & Chamberland, C. (2010). Toward a general model for child welfare and protection services: A meta-evaluation
of international experiences regarding the adoption of the Framework for Assessment of Children in Need and Their Families
(FACNF). Children and Youth Services Review. 32(7), 929-944.
https://doi.org/10.1016/j.childyouth.2010.03.009
Unstructured Citation
Milani, L., Grumi, S., Camisasca, E., Miragoli, S., Traficante, D., Di Blasio, P. (2020). Familial risk and protective factors
affecting CPS professionals’child removal decision: A decision tree analysis study. Children and Youth Services Review, 109,
1-8.
https://doi.org/10.1016/j.childyouth.2019.104687
Unstructured Citation
MiSE (2020). Proposte per una strategia italiana per l’Intelligenza Artificiale. Ministero dello Sviluppo Economico, Roma. -- Disponibile online: www.mimit.gov.it.
Unstructured Citation
Munro, E. (1999). Common errors of reasoning in child protection work. Child Abuse & Neglet, 23(8), 745-758.
https://doi.org/10.1016/S0145-2134(99)00053-8
Unstructured Citation
Pasceri, G. (2021). Intelligenza artificiale, algoritmo e machine learning. La responsabilità del medico e dell’amministrazione sanitaria. Milano: Giuffré Francis Lefebvre.
Unstructured Citation
Rahbar, H., Bhayani, S., Stifelman, M., Kaouk, J., Allaf, M., Marshall, S., & Rogers, C. (2014). Evaluation of renal mass
biopsy risk stratification algorithm for robotic partial nephrectomy – could a biopsy have guided management?. The Journal
of urology. 192(5), 1337-1342.
https://doi.org/10.1016/j.juro.2014.06.028
Unstructured Citation
Romani, F. (2017). Elementi di Algoritmica. Pisa: University Press.
Unstructured Citation
Ross, E. H., & Kearney, C. A. (2017). Posttraumatic symptoms among maltreated youth using classification and regression tree
analysis. Child Abuse & Neglet, 69, 177-187.
https://doi.org/10.1016/j.chiabu.2017.04.028
Unstructured Citation
Schwartz, I. M., York, P., Nowakowski-Sims, E., & Ramos-Hernandez, A. (2017). Predictive and prescriptive analytics, machine
learning and child welfare risk assessment: The Broward Country experience. Children and Youth Service Review, 81, 309-320.
https://doi.org/10.1016/j.childyouth.2017.08.020
Unstructured Citation
Shlonsky, A., & Wagner, D. (2004). The next step: Integrating actuarial risk assessment and clinical judgment into an evidence-based
practice framework in CPS case management. Children and Youth Service Review, 27, 409-427.
https://doi.org/10.1016/j.childyouth.2004.11.007
Unstructured Citation
Stokes, J., & Schmidt, G. (2012). Child Protection Decision Making: A Factorial Analysis Using Case Vignettes. Social Work,
57(1), 83-90.
https://doi.org/10.1093/sw/swr007
Unstructured Citation
Thurston, H., & Miyamoto, S. (2018). The use of model based recursive partitioning as an analytic tool in child welfare.
Child Abuse & Neglet, 79, 293-301.
https://doi.org/10.1016/j.chiabu.2018.02.012
Unstructured Citation
Tobia, V., Gabriele, M. A., & Marzocchi, G. M. (2011), Lo Strengths and Difficulties Questionnaire (SDQ) nella scuola primaria. Il comportamento dei bambini italiani valutato dai loro insegnanti. Disturbi di attenzione e iperattività. 6(2). Trento: Ed. Erickson.